Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Nano Res ; : 1-8, 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-20239241

ABSTRACT

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has necessitated rapid, easy-to-use, and accurate diagnostic methods to monitor the virus infection. Herein, a ratiometric fluorescence enzyme-linked immunosorbent assay (ELISA) was developed using Si-fluorescein isothiocyanate nanoparticles (FITC NPs) for detecting SARS-CoV-2 nucleocapsid (N) protein. Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane (APTES)-FITC as the Si source. This method did not need post-modification and avoided the reduction in quantum yield and stability. The p-nitrophenyl (pNP) produced by the alkaline phosphatase (ALP)-mediated hydrolysis of p-nitrophenyl phosphate (pNPP) could quench Si fluorescence in Si-FITC NPs via the inner filter effect. In ELISA, an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody. ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs. The change in fluorescence intensity ratio could be used for detecting N protein, with a wide linearity range (0.01-10.0 and 50-300 ng/mL) and low detection limit (0.002 ng/mL). The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum. Moreover, this proposed method can accurately distinguish coronavirus disease 2019 (COVID-19) and non-COVID-19 patient samples. Therefore, this simple, sensitive, and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection. Electronic Supplementary Material: Supplementary material (characterization of Si-FITC NPs (FTIR spectrum, XRD spectra, and synchronous fluorescence spectra); condition optimization of ALP response (fluorescence intensity ratio change); mechanism investigation of ALP response (fluorescence lifetime decay curves and UV-vis absorption spectra); detection of N protein using commercial ELISA Kit; analytical performance of assays for ALP detection or SARS-CoV-2 N protein detection; and determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-4740-5.

2.
Micromachines (Basel) ; 14(4)2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2299345

ABSTRACT

A film-stacked structure consisting of polyethylene terephthalate (PET) films stacked in a gap of 20 µm that can be combined with 96-well microplates used in biochemical analysis has been developed by the authors. When this structure is inserted into a well and rotated, convection flow is generated in the narrow gaps between the films to enhance the chemical/bio reaction between the molecules. However, since the main component of the flow is a swirling flow, only a part of the solution circulates into the gaps, and reaction efficiency is not achieved as designed. In this study, an unsteady rotation is applied to promote the analyte transport into the gaps using the secondary flow generated on the surface of the rotating disk. Finite element analysis is used to evaluate the changes in flow and concentration distribution for each rotation operation and to optimize the rotation conditions. In addition, the molecular binding ratio for each rotation condition is evaluated. It is shown that the unsteady rotation accelerates the binding reaction of proteins in an ELISA (Enzyme Linked Immunosorbent Assay), a type of immunoassay.

3.
Uncovering The Science of Covid-19 ; : 97-128, 2022.
Article in English | Scopus | ID: covidwho-2254823

ABSTRACT

Detection and diagnosis platforms play key roles in early warning, outbreak control and exit strategy for any pandemic, and they are especially pertinent for the Coronavirus disease 2019 (COVID-19) pandemic. The challenges posed by the speed and extent of severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) spread around the globe also offered unprecedented opportunities for the development and deployment of novel strategies and products - not only vaccines and therapeutics, but also diagnostics. This chapter provides a brief summary of the vast array of molecular, serological, cell-based and other diagnostic tools for the specific detection of SARS-CoV-2 infections and immune responses. The focus is on the principles and applications of each platform, while detailed protocols can be found in the cited references. © 2023 by World Scientific Publishing Co. Pte. Ltd.

4.
Cureus ; 15(1): e34096, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2261908

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which causes coronavirus disease 2019 (COVID-19) disease, was first described in 2019 and became a pandemic in 2020. Although it is possible for two viruses to co-infect together, a rarer phenomenon of false-positive results due to cross-reactivity between viruses is also possible. Herein, we present two cases of the false-positive human immunodeficiency virus (HIV) results in those infected with COVID-19. Both patients were screened for HIV and were initially found to be positive with the fourth-generation test. A subsequent blood test revealed no viral load, and an enzyme-linked immunosorbent assays (ELISA) test indicated no reactivity to HIV, thus the false initial screening test. SARS-CoV-2 is an enveloped RNA virus with its outer surface containing a spike-like glycoprotein, which allows it to recognize host cells and invade. HIV-1 gp41 and SARS-CoV-2 share several structural sequences and motifs. These similarities could explain cross-reactivity and false-positive results when screening for HIV in the presence of COVID. The presence of HIV must be confirmed through more specific laboratory tests such as ELISA.

5.
Front Med (Lausanne) ; 10: 1154584, 2023.
Article in English | MEDLINE | ID: covidwho-2278597
6.
Protein Pept Lett ; 2022 Dec 06.
Article in English | MEDLINE | ID: covidwho-2281743

ABSTRACT

BACKGROUND: It has been reported that the SARS-CoV-2 pandemic originated in Wuhan, China in December 2019 and spread rapidly worldwide. The virus gets entry into target cells via angiotensin-converting enzyme 2 (ACE2) receptors and its gene is highly polymorphic. INTRODUCTION: the variations in SARS-CoV-2 susceptibility and severity can be explained on a genetic level by studying the polymorphism in ACE2 receptor polymorphism. OBJECTIVE: A prospective case-control study was designed to compare the ACE2 levels in SARS-CoV-2 patients with the healthy controls in the local population, for which a total of 100 EDTA-containing blood samples were included (50 SARS-CoV-2 IgM positive case and 50 healthy controls). METHODS: PCR-RFLP was performed to investigate the polymorphism of ACE2 in genomic DNA and the ACE2 plasma levels were determined through ELISA. RESULTS: No significant difference in allelic and genotype frequencies (GG, GA, AA) were observed while the ACE2 plasma levels were found to be decreased in positive samples. CONCLUSION: No significant association of the ACE2 gene polymorphism (G8790A) was found with the SARS-CoV-2 susceptibility in the Pakistani population which intimates the search for other genetic factors within the local population.

7.
Virol J ; 19(1): 50, 2022 03 19.
Article in English | MEDLINE | ID: covidwho-1841008

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered the worldwide coronavirus disease 2019 (COVID-19) pandemic. Serological assays for the detection of SARS-CoV-2 infections are important to understand the immune response in patients and to obtain epidemiological data about the number of infected people, especially to identify asymptomatic persons not aware of a past infection. METHODS: We recombinantly produced SARS-CoV-2 nucleocapsid (N)-protein in Escherichia coli. We used the purified protein to develop an indirect enzyme-linked immunosorbent assay (ELISA) for the detection of SARS-CoV-2 specific antibodies. This ELISA method was optimized and validated with serum samples collected from 113 patients with RT-PCR-confirmed SARS-CoV-2 infections including hospitalized COVID-19 patients and 1500 control sera mostly collected before 2015 with different clinical background. RESULTS: The optimized N-protein-ELISA provided a sensitivity of 89.7% (n = 68) for samples collected from patients with confirmed SARS-CoV-2 infections and mild to severe symptoms more than 14 days after symptom onset or a positive PCR test. The antibody levels remained low for serum samples collected in the first six days (n = 23) and increased in the second week (n = 22) post symptom onset or PCR confirmation. At this early phase, the ELISA provided a sensitivity of 39.1% and 86.4%, respectively, reflecting the time of an IgG immune response against pathogens. The assay specificity was 99.3% (n = 1500; 95% CI 0.995-0.999). Serum samples from persons with confirmed antibody titers against human immunodeficiency viruses 1/2, parvovirus B19, hepatitis A/B virus, cytomegalovirus, Epstein Barr virus, and herpes simplex virus were tested negative. CONCLUSIONS: We conclude that the N-protein-based ELISA developed here is well suited for the sensitive and specific serological detection of SARS-CoV-2 specific IgG antibodies in human serum for symptomatic infections. It may also prove useful to identify previous SARS-CoV-2 infections in vaccinated people, as all currently approved vaccines rely on the SARS-CoV-2 spike (S-) protein.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Herpesvirus 4, Human , Humans , Nucleocapsid Proteins , SARS-CoV-2
8.
Antibodies (Basel) ; 11(4)2022 Dec 12.
Article in English | MEDLINE | ID: covidwho-2163213

ABSTRACT

A key in controlling the SARS-CoV-2 pandemic is the assessment of the immune status of the population. We explored the utility of SARS-CoV-2 virus-like particles (VLPs) as antigens to detect specific humoral immune reactions in an enzyme-linked immunosorbent assay (ELISA). For this purpose, SARS-CoV-2 VLPs were produced from an engineered cell line and characterized by Western blot, ELISA, and nanoparticle tracking analysis. Subsequently, we collected 42 serum samples from before the pandemic (2014), 89 samples from healthy subjects, and 38 samples from vaccinated subjects. Seventeen samples were collected less than three weeks after infection, and forty-four samples more than three weeks after infection. All serum samples were characterized for their reactivity with VLPs and the SARS-CoV-2 N- and S-protein. Finally, we compared the performance of the VLP-based ELISA with a certified in vitro diagnostic device (IVD). In the applied set of samples, we determined a sensitivity of 95.5% and a specificity of 100% for the certified IVD. There were seven samples with an uncertain outcome. Our VLP-ELISA demonstrated a superior performance, with a sensitivity of 97.5%, a specificity of 100%, and only three uncertain outcomes. This result warrants further research to develop a certified IVD based on SARS-CoV-2 VLPs as an antigen.

9.
Ital J Pediatr ; 48(1): 192, 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2153620

ABSTRACT

BACKGROUND: US Food and Drug Administration has issued Emergency Use Authorizations for hundreds of serological assays to support Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) diagnosis. The aim of this study is to evaluate, for the first time in children, the performance of three widely utilized SARS-CoV-2 serology commercial assays, Diesse Diagnostics (IgG, IgA, IgM) and Roche Diagnostics, both Roche Nucleocapsid (N) IgG and Roche Spike (S) IgG assays. METHODS: Sensitivity and 95% confidence intervals (CIs) were estimated for each of the three different serological tests and mixed and direct comparison were performed. Univariate and multivariate Poisson regression models were fitted to calculate incidence rate ratios and 95% CIs as estimate of the effects of age, gender, time on the serology title. A p-value < 0.05 indicated statistical significance. RESULTS: Overall, 149 children were enrolled in the study. A low sensitivity was found for Diesse IgA, IgM and IgG. Compare to Diesse, Roche S had a higher sensitivity at 15-28 days from infection (0.94, 95%CI: 0.73-1.0) and Roche N at 28-84 days (0.78, 95%CI: 0.58-0.91). When a direct comparison of IgG tests sensitivity was feasible for patients with pairwise information, Roche S and Roche N showed a statistically significant higher sensitivity compared to Diesse in all the study periods, whereas there was no difference between the two Roche tests. CONCLUSION: Roche S and Roche N serology tests seem to better perform in children. Large prospective studies are needed to better define the characteristics of those tests.


Subject(s)
COVID-19 , SARS-CoV-2 , United States , Child , Humans , Prospective Studies , COVID-19/diagnosis , COVID-19/epidemiology , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M
10.
Front Cardiovasc Med ; 9: 1012452, 2022.
Article in English | MEDLINE | ID: covidwho-2162987
11.
Cureus ; 14(9): e29296, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2072206

ABSTRACT

Background Patients with chronic kidney disease and undergoing hemodialysis are at greater risk of developing COVID-19. In spite of vaccine efficacy, SARS-CoV-2 breakthrough infection has been reported in several studies. This study was carried out to assess if seroconversion could predict SARS-CoV-2 breakthrough infection in a cohort of vaccinated patients undergoing hemodialysis. Methodology Patients undergoing maintenance hemodialysis for at least three months and who had received two doses of BBV152 or AZD1222 vaccine were included in the study. Their baseline IgG antibodies to SARS-CoV-2 were measured and followed up for a median of three months during the third wave of COVID-19 in India with SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) to detect breakthrough infections. Results Of 80 patients enrolled, seroconversion was seen in 81% of the cases, and SARS-CoV-2 breakthrough cases have been detected in 16% (13/80; 95% CI 8.95-26.18) patients undergoing hemodialysis. Of the 13 patients, seven patients required hospitalization and others had a mild outcome. There was no correlation of baseline seropositivity with breakthrough infections or hospitalization. Conclusions A majority of patients who underwent hemodialysis are seropositive post-vaccination. The breakthrough infection did not correlate with baseline seroconversion. Thus, there would be other predictors of breakthrough COVID-19 infections that need to be recognized in this susceptible population.

12.
Int J Infect Dis ; 122: 576-584, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2015433

ABSTRACT

OBJECTIVES: Observing the serological cross-reactivity between SARS-CoV-2 and dengue virus (DV), we aimed to elucidate its effect on dengue serodiagnosis and infectivity in a highly dengue-endemic city in India. METHODS: A total of 52 COVID-19 (reverse transcription-polymerase chain reaction [RT-PCR] positive) serum samples were tested in rapid lateral flow immunoassays and DV immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) to detect DV or SARS-CoV-2 IgG/immunoglobulin M. The COVID-19 antibody (Ab) positive samples were subjected to a virus neutralization test (Huh7 cells) using DV type 1 (DV1) clinical isolate. RESULTS: Most (93%) of the SARS-CoV-2 Ab-positive serum samples cross-reacted with DV in rapid or ELISA tests. All were DV RNA and nonstructural protein 1 (NS1) antigen-negative. COVID-19 serum samples that were DV cross-reactive neutralized DV1. Of these, 57% had no evidence of DV pre-exposure (DV NS1 Ab-negative). The computational study also supported potential interactions between SARS-CoV-2 Ab and DV1. CONCLUSION: DV serodiagnosis will be inconclusive in areas co-endemic for both viruses. The COVID-19 pandemic appears to impart a protective response against DV in DV-endemic populations.


Subject(s)
COVID-19 , Dengue Virus , Dengue , Antibodies, Viral , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G , Immunoglobulin M , Neutralization Tests , Pandemics , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests
13.
J Clin Virol ; 155: 105270, 2022 10.
Article in English | MEDLINE | ID: covidwho-1996329

ABSTRACT

Dried Blood Spots (DBS) are broadly used in SARS-CoV-2 surveillance studies, reporting either the presence or absence of SARS-CoV-2 antibodies. However, quantitative follow-up has become increasingly important to monitor humoral vaccine responses. Therefore, we aimed to evaluate the performance of DBS for the detection of anti-spike SARS-CoV-2 antibody concentrations using a commercially available assay, reporting in a standardised unitage (International Units/mL; IU/mL). To assess the sensitivity and specificity of the ImmunoDiagnostics ELISA on serum and DBS for SARS-CoV-2 antibody detection, we analysed 72 paired DBS and serum samples. The SARS-CoV-2 S1 IgG ELISA kit (EUROIMMUN) on serum was used as the reference method. We performed a statistical assessment to optimise the cut-off value for DBS and serum and assessed the correlation between DBS and serum antibody concentrations. We found that anti-spike SARS-CoV-2 antibody concentrations detected in DBS are highly correlated to those detected in paired serum (Pearson correlation 0.98; p-value < 0.0001), allowing to assess serum antibody concentration using DBS. The optimal cut-off for antibody detection on DBS was found to be 26 IU/mL, with 98.1% sensitivity and 100% specificity. For serum, the optimal cut-off was 14 IU/mL, with 100% sensitivity and 100% specificity. Therefore, we conclude that the ImmunoDiagnostics ELISA kit has optimal performance in the detection of SARS-CoV-2 antibodies on both DBS and serum. This makes DBS ideal for large-scale follow-up of humoral SARS-CoV-2 immune responses, as it is an easy but valuable sampling method for quantification of SARS-CoV-2 antibodies, compared to serum.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoglobulin G , Sensitivity and Specificity
14.
Klin Lab Diagn ; 66(8): 472-479, 2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1780504

ABSTRACT

Test kit for detection of specific IgM to SARS-CoV-2 by immune blotting in the «Line blot¼ format has been developed. A preliminary study of diagnostic effectivity on clinical samples of blood serum from patients with COVID-19 and healthy donors showed its high sensitivity and specificity. The new test kit allows to detect IgM to all four structural antigens of SARS-CoV-2 and can be used as a confirmatory test to verify indeterminant screening results in laboratory etiological diagnosis of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G , Immunoglobulin M , Sensitivity and Specificity
15.
Klin Lab Diagn ; 65(11): 683-687, 2020 Dec 04.
Article in English | MEDLINE | ID: covidwho-1780382

ABSTRACT

A new original Russian test kit for the detection of IgG-antibodies to the causative agent of COVID-19 - coronavirus SARS-CoV-2 by the method of enzyme-linked immunosorbent assay (ELISA) on a solid-phase «ELISA-SARS-CoV-2-AT-G¼ has been developed. In comparative tests with similar test systems «Vitrotest® SARS-CoV-2 IgG¼ (Vitrotest, Ukraine) and «Anti-SARS-Cov-2 ELISA (IgG)¼ (EUROIMMUN AG, Germany) high diagnostic efficiency of the new test system was shown.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G/analysis , Clinical Laboratory Techniques , Humans , Plasma , Reagent Kits, Diagnostic
16.
J Clin Med ; 10(8)2021 Apr 10.
Article in English | MEDLINE | ID: covidwho-1526830

ABSTRACT

PURPOSE: To assess the diagnostic performances of five automated anti-SARS-CoV-2 immunoassays, Epitope (N), Diasorin (S1/S2), Euroimmun (S1), Roche N (N), and Roche S (S-RBD), and to provide a testing strategy based on pre-test probability. METHODS: We assessed the receiver operating characteristic (ROC) areas under the curve (AUC) values, along with the sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs), of each assay using a validation sample set of 172 COVID-19 sera and 185 negative controls against a validated S1-immunofluorescence as a reference method. The three assays displaying the highest AUCs were selected for further serodetection of 2033 sera of a large population-based cohort. RESULTS: In the validation analysis (pre-test probability: 48.1%), Roche N, Roche S and Euroimmun showed the highest discriminant accuracy (AUCs: 0.99, 0.98, and 0.98) with PPVs and NPVs above 96% and 94%, respectively. In the population-based cohort (pre-test probability: 6.2%) these three assays displayed AUCs above 0.97 and PPVs and NPVs above 90.5% and 99.4%, respectively. A sequential strategy using an anti-S assay as screening test and an anti-N as confirmatory assays resulted in a 96.7% PPV and 99.5% NPV, respectively. CONCLUSIONS: Euroimmun and both Roche assays performed equally well in high pre-test probability settings. At a lower prevalence, sequentially combining anti-S and anti-N assays resulted in the optimal trade-off between diagnostic performances and operational considerations.

17.
J Formos Med Assoc ; 120(12): 2186-2190, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1198883

ABSTRACT

We presented the clinical course and immune responses of a well-controlled HIV-positive patient with COVID-19. The clinical presentation and antibody production to SARS-CoV-2 were similar to other COVID-19 patients without HIV infection. Neutralizing antibody reached a plateau from 26th to 47th day onset but decreased on 157th day after symptoms.


Subject(s)
COVID-19 , HIV Infections , Antibodies, Neutralizing , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , HIV Infections/complications , Humans , Immunoglobulin G , SARS-CoV-2
18.
J Pers Med ; 11(1)2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-1027288

ABSTRACT

The coronavirus infection 2019 (COVID-19) pandemic, caused by the highly contagious SARS-CoV-2 virus, has provoked a global healthcare and economic crisis. The control over the spread of the disease requires an efficient and scalable laboratory-based strategy for testing the population based on multiple platforms to provide rapid and accurate diagnosis. With the onset of the pandemic, the reverse transcription polymerase chain reaction (RT-PCR) method has become a standard diagnostic tool, which has received wide clinical use. In large-scale and repeated examinations, these tests can identify infected patients with COVID-19, with their accuracy, however, dependent on many factors, while the entire process takes up to 6-8 h. Here we also describe a number of serological systems for detecting antibodies against SARS-CoV-2. These are used to assess the level of population immunity in various categories of people, as well as for retrospective diagnosis of asymptomatic and mild COVID-19 in patients. However, the widespread use of traditional diagnostic tools in the context of the rapid spread of COVID-19 is hampered by a number of limitations. Therefore, the sharp increase in the number of patients with COVID-19 necessitates creation of new rapid, inexpensive, sensitive, and specific tests. In this regard, we focus on new laboratory technologies such as loop mediated isothermal amplification (LAMP) and lateral flow immunoassay (LFIA), which have proven to work well in the COVID-19 diagnostics and can become a worthy alternative to traditional laboratory-based diagnostics resources. To cope with the COVID-19 pandemic, the healthcare system requires a combination of various types of laboratory diagnostic testing techniques, whodse sensitivity and specificity increases with the progress in the SARS-CoV-2 research. The testing strategy should be designed in such a way to provide, depending on the timing of examination and the severity of the infection in patients, large-scale and repeated examinations based on the principle: screening-monitoring-control. The search and development of new methods for rapid diagnostics of COVID-19 in laboratory, based on new analytical platforms, is still a highly important and urgent healthcare issue. In the final part of the review, special emphasis is made on the relevance of the concept of personalized medicine to combat the COVID-19 pandemic in the light of the recent studies carried out to identify the causes of variation in individual susceptibility to SARS-CoV-2 and increase the efficiency and cost-effectiveness of treatment.

19.
EBioMedicine ; 61: 103069, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-983306

ABSTRACT

BACKGROUND: Italy was the first western country to experience a large Coronavirus Disease 2019 (COVID-19) outbreak and the province of Bergamo experienced one of the deadliest COVID-19 outbreaks in the world. Following the peak of the epidemic in mid-March, the curve has slowly fallen thanks to the strict lockdown imposed by the Italian government on 9th March 2020. METHODS: We performed a cross-sectional study to assess the prevalence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in 423 workers in Bergamo province who returned to the workplace after the end of the Italian lockdown on 5th May 2020. To this end, we performed an enzyme-linked immunosorbent assay (ELISA) to detect the humoral response against SARS-CoV-2 and a nasopharyngeal swab to assess the presence of SARS-CoV-2 RNA by real-time reverse transcription polymerase chain reaction (rRT-PCR). As a secondary aim of the study, we validated a lateral flow immunochromatography assay (LFIA) for the detection of anti-SARS-CoV-2 antibodies. FINDINGS: ELISA identified 38.5% positive subjects, of whom 51.5% were positive for both IgG and IgM, 47.3% were positive only for IgG, but only 1.2% were positive for IgM alone. Only 23 (5.4%) participants tested positive for SARS-CoV-2 by rRT-PCR, although with high cycle thresholds (between 34 and 39), indicating a very low residual viral load that was not able to infect cultured cells. All these rRT-PCR positive subjects had already experienced seroconversion. When the ELISA was used as the comparator, the estimated specificity and sensitivity of the rapid LFIA for IgG were 98% and 92%, respectively. INTERPRETATION: the prevalence of SARS-CoV-2 infection in the province of Bergamo reached 38.5%, significantly higher than has been reported for most other regions worldwide. Few nasopharyngeal swabs tested positive in fully recovered subjects, though with a very low SARS-CoV-2 viral load, with implications for infectivity and discharge policies for positive individuals in the post-pandemic period. The rapid LFIA used in this study is a valuable tool for rapid serologic surveillance of COVID-19 for population studies. FUNDING: The study was supported by Regione Lombardia, Milano Serravalle - Milano Tangenziali S.p.A., Brembo S.p.A, and by MEI System.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/genetics , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/metabolism , Adult , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Italy/epidemiology , Male , Middle Aged , Nasopharynx/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Viral Load
20.
Am J Clin Pathol ; 154(3): 293-304, 2020 08 05.
Article in English | MEDLINE | ID: covidwho-614466

ABSTRACT

OBJECTIVES: To examine and summarize the current literature on serologic methods for the detection of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: A literature review was performed using searches in databases including PubMed, medRxiv, and bioRxiv. Thirty-two peer-reviewed papers and 23 preprints were examined. RESULTS: The studies included lateral flow immunoassay, enzyme-linked immunosorbent assay, chemiluminescence immunoassay, and neutralizing antibody assays. The use of all major SARS-CoV-2 antigens was demonstrated to have diagnostic value. Assays measuring total antibody reactivity had the highest sensitivity. In addition, all the methods provided opportunities to characterize the humoral immune response by isotype. The combined use of IgM and IgG detection resulted in a higher sensitivity than that observed when detecting either isotype alone. Although IgA was rarely studied, it was also demonstrated to be a sensitive marker of infection, and levels correlated with disease severity and neutralizing activity. CONCLUSIONS: The use of serologic testing, in conjunction with reverse transcription polymerase chain reaction testing, was demonstrated to significantly increase the sensitivity of detection of patients infected with SARS-CoV-2. There was conflicting evidence regarding whether antibody titers correlated with clinical severity. However, preliminary investigations indicated some immunoassays may be a surrogate for the prediction of neutralizing antibody titers and the selection of recovered patients for convalescent serum donation.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Antibody Formation , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Humans , Immunoglobulin G , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL